
����������
�������

Citation: El-Meligy, N.E.; Diab, T.O.;

Mohra, A.S.; Hassan, A.Y.; El-Sobky, W.I.

A Novel Dynamic Mathematical

Model Applied in Hash Function

Based on DNA Algorithm and

Chaotic Maps. Mathematics 2022, 10,

1333. https://doi.org/10.3390/

math10081333

Academic Editor:

Angel Martín-del-Rey

Received: 17 March 2022

Accepted: 8 April 2022

Published: 17 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Novel Dynamic Mathematical Model Applied in Hash
Function Based on DNA Algorithm and Chaotic Maps
Nada E. El-Meligy 1, Tamer O. Diab 1, Ashraf S. Mohra 1, Ashraf Y. Hassan 1 and Wageda I. El-Sobky 2,3,*

1 Electrical Engineering Department, Benha Faculty of Engineering, Benha University, Benha 13511, Egypt;
nadaelmeligy@bhit.bu.edu.eg (N.E.E.-M.); tamer.almarsafawy@bhit.bu.edu.eg (T.O.D.);
amohra@bhit.bu.edu.eg (A.S.M.); ashraf.fahmy@bhit.bu.edu.eg (A.Y.H.)

2 Department of Basic Engineering Sciences, Canadian International College (CIC), New Cairo 11865, Egypt
3 Department of Basic Engineering Sciences, Benha Faculty of Engineering, Benha University,

Benha 13511, Egypt
* Correspondence: wageda_ibrahim@cic-cairo.com

Abstract: This paper aims to improve SHA-512 security without increasing complexity; therefore,
we focused on hash functions depending on DNA sequences and chaotic maps. After analysis of
45 various chaotic map types, only 5 types are selected in this proposal—namely, improved logistic,
cosine logistic map, logistic sine system, tent sine system, and hybrid. Using DNA features and
binary coding technology with complementary rules to hide information is a key challenge. This
article proposes improving SHA-512 in two aspects: the modification of original hash buffer values,
and the modification of additive constants Kt. This proposal is to make hash buffer values (a, b, c,
d, e, f, g, and h) and Kt dependent on one-dimensional discrete chaotic maps and DNA sequences
instead of constant. This modification complicates the relationship between the original message
and hash value, making it unexpected. The performance of the proposed hash function is tested
and analyzed the confusion, diffusion, and distributive and compared with the original SHA-512.
The performance of security is analyzed by collision analysis, for which the maximum number of
hits is only three, showing that the proposed hash function enhances the security and robustness of
SHA-512. The statistical data and experimental analysis indicate that the proposed scheme has good
properties and satisfies high-performance requirements for secure hash functions.

Keywords: hash function; chaotic map; improved logistic; cosine logistic map; logistic sine system;
tent sine system; DNA sequence; DNA complementary rules

MSC: 03B70; 11T71; 14G50; 34C28; 34K23; 39A33; 68M25; 68P25

1. Introduction

Cryptographic algorithms can be categorized into three classes: symmetric cryptogra-
phy, or single-key cryptography, which uses a single key to encrypt data [1–4]; asymmetric
cryptography, or public-key cryptography, which uses two keys (one to encrypt the mes-
sage and the other to decrypt the ciphertext); hashing functions, which do not need any
key and protect the data using a one-way function [5].

In recent years, hash functions have played important roles in message authentica-
tion [6], integrity protection, digital signatures [1,7–9], and even blockchain [10–15]. Hash
functions map an arbitrary size input into an output of fixed length hash values or message
digest h = H(M). The most used algorithm in hash function has been the Secure Hash
Algorithm (SHA) [16]. SHA was published by the National Institute of Standards and
Technology (NIST) as a FIPS in 1993. Hash values produced by SHA-0 are 160 bits long but,
after publication, SHA-0 was rejected for use due to the presence of a “significant flaw”. In
1995, SHA-1 was published to resolve SHA-0′s security problem. Its design is close to that

Mathematics 2022, 10, 1333. https://doi.org/10.3390/math10081333 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10081333
https://doi.org/10.3390/math10081333
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-3393-9068
https://doi.org/10.3390/math10081333
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10081333?type=check_update&version=1

Mathematics 2022, 10, 1333 2 of 21

of the MD5 hash function. In 2005, SHA-1 fell from use due to the discovery of security
vulnerabilities that prompted a transition to SHA-2 [17].

SHA-2 consists of hash functions with different lengths: SHA-256 is a 256-bit model,
SHA-384 is a 384-bit model, and SHA-512 is a 512-bit model [18]. All SHA-2 variants use
the same types of logical binary operation and modular arithmetic. SHA-512 is used in
applications due to three factors: computational efficiency, security, and compatibility. This
algorithm is widely used for password hashing, digital record verification, and blockchain
technology [19,20].

Chaotic systems have come to be used in many applications of engineering, math-
ematics, physics, biology, chemistry, and cryptography over the past few years because
of properties such as their sensitivity to small changes in initial conditions and control
parameters [21]. A small change in the initial states will lead to completely different results,
whether a completely different path or a transition to a continuous state. This property
is referred to as the butterfly effect [22]. Chaotic systems can be continuous or discrete.
Continuous chaotic systems are based on differential equations, while discrete systems
are based on difference equations. Numerically solving differences rather than using
differential equations can significantly increase the encryption speed, and there are no
merits in using continuous over simple discrete chaotic systems; therefore, any continuous
chaotic system can be replaced by a discrete one without loss of security [23]. Discrete
chaotic systems can be represented as digital chaos due to being expressible by iteration
and difference equations. Many researchers choose the logistic map, Baker map, and tent
maps, which are discrete-time maps due to their easy implementation [22]. Digital chaotic
systems can be classified into two types: one dimensional (1D) and multidimensional (MD).
MD chaos maps are increasingly used in image security due to their complex structure and
multiple parameters. However, their complexity increases the difficulty of both hardware and
software implementation and the associated computational complexity, but 1D chaos systems
have the advantages of simple structure, low computation, and easy-to-implement process.

DNA computing is a new technique for securing data from unauthorized access using
the biological structure of DNA. It was invented by Adleman in 1994. DNA stands for
deoxyribose nucleic acid. Each cell in living organisms has a unique, complete set of DNA,
which is responsible for bearing the genetic characteristic from parents to offspring. The
DNA strands are polymers of millions of linked nucleotides. These nucleotides consist of
adenine, guanine, cytosine, and thymine [24].

Currently, these simple hash buffers values and additive constants in SHA-512 will
carry considerable security threats; therefore, we used chaotic maps with DNA in making
additive constants and hash buffers, thus increasing unpredictability and uncertainty.

2. Materials and Methods
2.1. SHA-512 Hash Algorithm

In this algorithm, the maximum length of the input message is 2128 bits, and a message
digest with a fixed size of 512 bits is created. The block size of SHA-512 is 1024 bits, and the
number of iterations—known as rounds—is 80. Figure 1 shows the complete processing of
a message to its resultant message digest [25,26].

SHA-512 proceeds as follows:

• Step 1: Message preprocessing by padding and appending its length

Padding is added to the original message to match its length with 896 modulo 1024.
Padding consists of a single 1, followed by as many 0 s as needed. Space is left after padding
to append the length of the original message, achieving the target length.

• Step 2: Initializing hash buffer

SHA-512 uses 8 buffers of 64 bits each, denoted a, b, c, d, e, f, g and h, to hold temporary
and final results of the compression function. These eight buffers are initialized to the
following 64-bit (hexadecimal) values:

a = 6A09E667F3BCC908 b = BB67AE8584CAA73B

Mathematics 2022, 10, 1333 3 of 21

c = 3C6EF372FE94F82B d = A54FF53A5F1D36F1
e = 510E527FADE682D1 f = 9B05688C2B3E6C1F
g = 1F83D9ABFB41BD6B h = 5BE0CDI9137E2179

• Step 3: Compression function

The compression function in SHA-512 consists of 80 rounds. The input of each round
is the hash buffer (a, b, c, d, e, f, g, and h). Calculations are made on these buffers to create
hash buffers with new values to input in the next round. Each round takes, as input, the
64-bit value Wt, which is derived from a 1024-bit block using a message schedule, as shown
in Figure 1. Each round also takes an additive constant Kt, progressing from 1 to 80, which
has a constant value based on the number of the round. The output of the last round is
added to the input hash of the first round to produce Hi.

• Step 4: Output

The output of the last 1024-bit block is the 512-bit message digest.

Mathematics 2022, 10, x FOR PEER REVIEW 3 of 22

Figure 1. SHA-512 algorithm.

• Step 2: Initializing hash buffer

SHA-512 uses 8 buffers of 64 bits each, denoted a, b, c, d, e, f, g and h, to hold tempo-

rary and final results of the compression function. These eight buffers are initialized to the

following 64-bit (hexadecimal) values:

a = 6A09E667F3BCC908 b = BB67AE8584CAA73B

c = 3C6EF372FE94F82B d = A54FF53A5F1D36F1

e = 510E527FADE682D1 f = 9B05688C2B3E6C1F

g = 1F83D9ABFB41BD6B h = 5BE0CDI9137E2179

• Step 3: Compression function

The compression function in SHA-512 consists of 80 rounds. The input of each round

is the hash buffer (a, b, c, d, e, f, g, and h). Calculations are made on these buffers to create

hash buffers with new values to input in the next round. Each round takes, as input, the

64-bit value Wt, which is derived from a 1024-bit block using a message schedule, as

shown in Figure 1. Each round also takes an additive constant Kt, progressing from 1 to

80, which has a constant value based on the number of the round. The output of the last

round is added to the input hash of the first round to produce Hi.

• Step 4: Output

The output of the last 1024-bit block is the 512-bit message digest.

Figure 1. SHA-512 algorithm.

2.2. Chaotic Maps

One-dimensional chaos systems have the advantages of simple structure, low com-
putation, and easy-to-implement process [27–30]. However, they also face the three
following issues:

Mathematics 2022, 10, 1333 4 of 21

1. A limited range of chaotic behavior;
2. Less possibility of computational analysis using iteration and correlation functions;
3. Uneven distribution of chaotic output sequences.

Therefore, new chaotic systems need to be developed with better chaotic performance.
For this purpose, two existing 1D chaotic maps can be integrated to generate a new chaotic
map with superior properties such as time evolution, bifurcation diagram, and Lyapunov
exponent.

2.2.1. Improved Logistic Map

The logistic map is widely used for its simplicity, having fast and low computational
overhead, and its sensitivity to initial conditions. The output sequences differ depending
on the initial value of X0 (0 ≤ X0 ≤ 1) and µ as input [31–34]. Figure 2 shows a logistic pap
plotted from Formula (1).

Xn+1 = µ Xn (1 − Xn) (1)

Mathematics 2022, 10, x FOR PEER REVIEW 4 of 22

2.2. Chaotic Maps

One-dimensional chaos systems have the advantages of simple structure, low com-

putation, and easy-to-implement process [27–30]. However, they also face the three fol-

lowing issues:

1. A limited range of chaotic behavior;

2. Less possibility of computational analysis using iteration and correlation functions;

3. Uneven distribution of chaotic output sequences.

Therefore, new chaotic systems need to be developed with better chaotic perfor-

mance. For this purpose, two existing 1D chaotic maps can be integrated to generate a

new chaotic map with superior properties such as time evolution, bifurcation diagram,

and Lyapunov exponent.

2.2.1. Improved Logistic Map

The logistic map is widely used for its simplicity, having fast and low computational

overhead, and its sensitivity to initial conditions. The output sequences differ depending

on the initial value of X0 (0 ≤ X0 ≤ 1) and μ as input [31–34]. Figure 2 shows a logistic pap

plotted from Formula (1).

Xn+1 = μ Xn (1 − Xn) (1)

Figure 2. Bifurcation diagram of logistic map.

Although it offers benefits, logistic maps face some obstacles such as their limited

chaotic range and non-uniform distribution of the variant density function. Thus, there is

also an improved logistic map, as defined in Formula (2) [35]. Xn is a state variable that is

bounded in [0, 1], and the control parameters (a, b, and alpha) do not have any limited

range. However, for simulation analysis of dynamical behavior of the chaotic map, the

values are initialed as X0 = 0.123456789, a ∈ (0, 10], b ∈ (0, 10], alpha = 12,345. The values

of the improved logistic map are distributed regularly over [0, 1] intervals for values of all

three control parameters, as shown in Figure 3a.

f (Xn, a, b) = a Xn(1 − Xn) + b (1 + Xn) tan(Xn)

Xn+1 = f (Xn, a, b) × alpha − floor (f (Xn, a, b) × alpha)
(2)

Figure 2. Bifurcation diagram of logistic map.

Although it offers benefits, logistic maps face some obstacles such as their limited
chaotic range and non-uniform distribution of the variant density function. Thus, there is
also an improved logistic map, as defined in Formula (2) [35]. Xn is a state variable that
is bounded in [0, 1], and the control parameters (a, b, and alpha) do not have any limited
range. However, for simulation analysis of dynamical behavior of the chaotic map, the
values are initialed as X0 = 0.123456789, a ∈ (0, 10], b ∈ (0, 10], alpha = 12,345. The values
of the improved logistic map are distributed regularly over [0, 1] intervals for values of all
three control parameters, as shown in Figure 3a.

f (Xn, a, b) = a Xn(1 − Xn) + b (1 + Xn) tan(Xn)
Xn+1 = f (Xn, a, b) × alpha − floor (f (Xn, a, b) × alpha)

(2)

A chaotic map with a positive Lyapunov exponent (LE) will have completely diverged
paths after a number of iterations, while a larger LE value is an indicator of higher sensitivity
and unpredictability, as shown in Figure 3b.

The Lyapunov exponent refers to the separation pace of infinitesimally close trajecto-
ries [36]. Mathematically, it is defined as

LEi = lim
n→∞

(
1
t

log2
pi(t)
pi(0)

)
(3)

where pi(t) denotes the respective ellipsoidal length principal axis. An n-D system has
n number of LE. The existence of a positive exponent shows the presence of chaotic behavior
on the map. It has been shown that, for alpha ∈ [0, 12,345], and a, b ∈ [1, 10], the chaotic

Mathematics 2022, 10, 1333 5 of 21

map shows positive exponents for a wider range of all three parameters. LE becomes larger
with an increase in parameter b. When a = 4, alpha = 12,345 and b = 108, the largest LE
obtained is 42.0616.

Mathematics 2022, 10, x FOR PEER REVIEW 5 of 22

(a)

(b)

Figure 3. (a) Bifurcation plot versus parameter of improved logistic map; (b) Lyapunov exponent

versus parameter of improved logistic map.

A chaotic map with a positive Lyapunov exponent (LE) will have completely di-

verged paths after a number of iterations, while a larger LE value is an indicator of higher

sensitivity and unpredictability, as shown in Figure 3b.

Figure 3. (a) Bifurcation plot versus parameter of improved logistic map; (b) Lyapunov exponent
versus parameter of improved logistic map.

Mathematics 2022, 10, 1333 6 of 21

2.2.2. Cosine Logistic System

Any chaotic map can be used as the seed map in the cosine chaotic map (CCM) to
improve the range and complexity of its chaotic parameter. The CCM model is bounded in
the range of [−1, 1]. Merging the cosine and logistic maps produces the cosine logistic map
(CLM) described as Formula (4) [37].

Xn+1 = cos (2k+(r×X
n
×(1−X

n
))) (4)

where Xn is the state variable, which is bounded in [0, 1]; k ∈ [10, 24] and r ∈ [0, 4] are the
control parameters, as shown in Figure 4a. The CLM models have larger positive values of
LE, as shown in Figure 4b.

Mathematics 2022, 10, x FOR PEER REVIEW 6 of 22

The Lyapunov exponent refers to the separation pace of infinitesimally close trajec-

tories [36]. Mathematically, it is defined as

LEi = lim
n→∞

(
1

t
 log2

pi(t)

pi(0)
) (3)

where pi(t) denotes the respective ellipsoidal length principal axis. An n-D system has n

number of LE. The existence of a positive exponent shows the presence of chaotic behavior

on the map. It has been shown that, for alpha ∈ [0, 12,345], and a, b ∈ [1, 10], the chaotic

map shows positive exponents for a wider range of all three parameters. LE becomes

larger with an increase in parameter b. When a = 4, alpha = 12,345 and b = 108, the largest

LE obtained is 42.0616.

2.2.2. Cosine Logistic System

Any chaotic map can be used as the seed map in the cosine chaotic map (CCM) to

improve the range and complexity of its chaotic parameter. The CCM model is bounded

in the range of [−1, 1]. Merging the cosine and logistic maps produces the cosine logistic

map (CLM) described as Formula (4) [37].

Xn+1 = cos (2k+(r×Xn×(1−Xn))) (4)

where Xn is the state variable, which is bounded in [0, 1]; k ∈ [10, 24] and r ∈ [0, 4] are the

control parameters, as shown in Figure 4a. The CLM models have larger positive values

of LE, as shown in Figure 4b.

(a) (b)

Figure 4. Dynamical behavior of CLM: (a) bifurcation plot; (b) Lyapunov exponent.

2.2.3. Logistic Sine System

The logistic and sine maps can be used as seed maps to construct a new chaotic sys-

tem called the logistic sine system (LSS), defined in Formula (5) [38]. Figure 5b shows its

lyapunov exponent. The LSS behaves chaotically when parameter r ∈ [0, 4], and its chaotic

sequences are distributed uniformly within a range of [0, 1] as shown in figure 5a.

Xn+1 = (r·Xn(1 − Xn) + (4 − r) sin(π·Xn)/4)·mod·1 (5)

(a) (b)

Figure 5. Dynamical behavior of LLS: (a) bifurcation plot; (b) Lyapunov exponent.

Figure 4. Dynamical behavior of CLM: (a) bifurcation plot; (b) Lyapunov exponent.

2.2.3. Logistic Sine System

The logistic and sine maps can be used as seed maps to construct a new chaotic system
called the logistic sine system (LSS), defined in Formula (5) [38]. Figure 5b shows its
lyapunov exponent. The LSS behaves chaotically when parameter r ∈ [0, 4], and its chaotic
sequences are distributed uniformly within a range of [0, 1] as shown in Figure 5a.

Xn+1 = (r·Xn(1 − Xn) + (4 − r) sin(π·Xn)/4)·mod·1 (5)

Mathematics 2022, 10, x FOR PEER REVIEW 6 of 22

The Lyapunov exponent refers to the separation pace of infinitesimally close trajec-

tories [36]. Mathematically, it is defined as

LEi = lim
n→∞

(
1

t
 log2

pi(t)

pi(0)
) (3)

where pi(t) denotes the respective ellipsoidal length principal axis. An n-D system has n

number of LE. The existence of a positive exponent shows the presence of chaotic behavior

on the map. It has been shown that, for alpha ∈ [0, 12,345], and a, b ∈ [1, 10], the chaotic

map shows positive exponents for a wider range of all three parameters. LE becomes

larger with an increase in parameter b. When a = 4, alpha = 12,345 and b = 108, the largest

LE obtained is 42.0616.

2.2.2. Cosine Logistic System

Any chaotic map can be used as the seed map in the cosine chaotic map (CCM) to

improve the range and complexity of its chaotic parameter. The CCM model is bounded

in the range of [−1, 1]. Merging the cosine and logistic maps produces the cosine logistic

map (CLM) described as Formula (4) [37].

Xn+1 = cos (2k+(r×Xn×(1−Xn))) (4)

where Xn is the state variable, which is bounded in [0, 1]; k ∈ [10, 24] and r ∈ [0, 4] are the

control parameters, as shown in Figure 4a. The CLM models have larger positive values

of LE, as shown in Figure 4b.

(a) (b)

Figure 4. Dynamical behavior of CLM: (a) bifurcation plot; (b) Lyapunov exponent.

2.2.3. Logistic Sine System

The logistic and sine maps can be used as seed maps to construct a new chaotic sys-

tem called the logistic sine system (LSS), defined in Formula (5) [38]. Figure 5b shows its

lyapunov exponent. The LSS behaves chaotically when parameter r ∈ [0, 4], and its chaotic

sequences are distributed uniformly within a range of [0, 1] as shown in figure 5a.

Xn+1 = (r·Xn(1 − Xn) + (4 − r) sin(π·Xn)/4)·mod·1 (5)

(a) (b)

Figure 5. Dynamical behavior of LLS: (a) bifurcation plot; (b) Lyapunov exponent. Figure 5. Dynamical behavior of LLS: (a) bifurcation plot; (b) Lyapunov exponent.

2.2.4. Tent Sine System

The tent map shares the problems associated with logistic maps—namely, limited
chaotic range and non-uniform distribution in the range of [0, 1]. Combining the tent
and sine maps as seed maps generates a new chaotic system called the tent sine system
(TSS) [38]. Its definition is described in Formula (6), after unifying its parameters Xn ∈ [0, 1]
and r ∈ [0, 4]. As shown in Figure 6a, the TSS has perfect chaotic properties. The LSS and

Mathematics 2022, 10, 1333 7 of 21

TSS Lyapunov exponents have values greater than zero in the range of r ∈ [0, 4], as shown
in Figure 6b, but their seed maps have positive values of LE within a limited range.

xn+1 =

(

rxn
2 + (4−r) sin(πxn)

4

)
mod·1 xn < 0.5(

r(1−xn)
2 + (4−r) sin(πxn)

4

)
mod·1 xn ≥ 0.5

(6)

Mathematics 2022, 10, x FOR PEER REVIEW 7 of 22

2.2.4. Tent Sine System

The tent map shares the problems associated with logistic maps—namely, limited

chaotic range and non-uniform distribution in the range of [0, 1]. Combining the tent and

sine maps as seed maps generates a new chaotic system called the tent sine system (TSS)

[38]. Its definition is described in Formula (6), after unifying its parameters Xn ∈ [0, 1] and

r ∈ [0, 4]. As shown in Figure 6a, the TSS has perfect chaotic properties. The LSS and TSS

Lyapunov exponents have values greater than zero in the range of r ∈ [0, 4], as shown in

Figure 6b, but their seed maps have positive values of LE within a limited range.

xn+1 =

{

 (

rxn
2
+
(4 − r) sin(πxn)

4
)mod1 xn < 0.5

(
r(1 − xn)

2
+
(4 − r) sin(πxn)

4
)mod1 xn ≥ 0.5

 (6)

(a) (b)

Figure 6. Dynamical behavior of TSS: (a) bifurcation plot; (b) Lyapunov exponent.

2.2.5. Hybrid Chaotic Map

This type of chaotic map uses a hybrid combination of three different 1D chaotic

maps—tent, logistic, and sine—as its seed maps [39,40]. Figure 7B shows the LE values

versus parameters. The LE values in the three subplots are all positive, indicating the cha-

otic behavior of the proposed map with γ ∈ [1, 1.9], a ∈ [0.975, 0.995], and μ ∈ [0.5, 0.9].

Figure 7A shows the bifurcation plot of the Hybrid Chaotic map.

xn+1 = {
(a sin(μπxn) + γμxn(1 − μxn))mod1 0 ≤ xn ≤ 0.5

(a sin(μπ(1 − xn)) + γμ(1 − xn)(1 − μ(1 − xn)))mod1 0.5 < xn ≤ 1
 (7)

Figure 6. Dynamical behavior of TSS: (a) bifurcation plot; (b) Lyapunov exponent.

2.2.5. Hybrid Chaotic Map

This type of chaotic map uses a hybrid combination of three different 1D chaotic
maps—tent, logistic, and sine—as its seed maps [39,40]. Figure 7B shows the LE values
versus parameters. The LE values in the three subplots are all positive, indicating the
chaotic behavior of the proposed map with γ ∈ [1, 1.9], a ∈ [0.975, 0.995], and µ ∈ [0.5, 0.9].
Figure 7A shows the bifurcation plot of the Hybrid Chaotic map.

xn+1 =

{
(a sin(µπxn) + γµxn(1− µxn))mod·1 0 ≤ xn ≤ 0.5

(a sin(µπ(1− xn)) + γµ(1− xn)(1− µ(1− xn)))mod·1 0.5 < xn ≤ 1
(7)

2.3. DNA Sequence and Complementary Rules

There are four types of DNA nitrogen bases: adenine (A), guanine (G), cytosine (C),
and thymine (T); in addition, (A, T) and (C, G) are complementary pairs. DNA sequence
(C, G, A, T) can be represented in binary code, in which each nucleotide has two bits. By
using the Watson–Crick rule, nucleotides were represented by eight encoding rules, as
shown in Table 1 [41].

Table 1. DNA encoding rule.

Binary\Rule 1 2 3 4 5 6 7 8

00 C C G G T T A A

01 T A T A C G C G

10 A T A T G C G C

11 G G C C A A T T

There are six legal group complementary rules that each nucleotide (ni) must satisfy,
which are

ni 6= C(ni) 6= C(C(ni)) 6= C(C(C(ni)))
ni = C(C(C(C(ni))))

where C(ni) is a DNA complementary rule; group 1 is (A→ T) (T→ C) (C→ G) (G→ A),
etc. up to group 6, as shown in Table 2 [41].

Mathematics 2022, 10, 1333 8 of 21
Mathematics 2022, 10, x FOR PEER REVIEW 8 of 22

(A)

(B)

Figure 7. (A) Bifurcation plot versus parameter of hybrid chaotic map: (B) Lyapunov exponent ver-

sus parameter of hybrid chaotic map.

2.3. DNA Sequence and Complementary Rules

There are four types of DNA nitrogen bases: adenine (A), guanine (G), cytosine (C), and

thymine (T); in addition, (A, T) and (C, G) are complementary pairs. DNA sequence (C,

G, A, T) can be represented in binary code, in which each nucleotide has two bits. By using

the Watson–Crick rule, nucleotides were represented by eight encoding rules, as shown

in Table 1 [41].

Table 1. DNA encoding rule.

Binary\Rule 1 2 3 4 5 6 7 8

00 C C G G T T A A

01 T A T A C G C G

10 A T A T G C G C

11 G G C C A A T T

Figure 7. (A) Bifurcation plot versus parameter of hybrid chaotic map: (B) Lyapunov exponent versus
parameter of hybrid chaotic map.

Table 2. DNA complementary rules.

ni\Group G1 G2 G3 G4 G5 G6

A T T C C G G

T C G G A C A

C G A T G A T

G A C A T T C

2.4. Method

The main objective of a proposed hash is to generate a hash based on a 1D chaotic
map and DNA sequences and compare that with the original SHA-512. The hash value is
produced as follows, also shown in Figure 8:

Mathematics 2022, 10, 1333 9 of 21

• Step 1: The original message is encoded into an ASCII binary stream. The message
is padded with a 1, followed by 0 values, and the length of the original message is
appended at the final 128 bits. The number of zeroes is chosen so that the message
length, after padding and appending the message length, is a multiple of 1024.

• Step 2: Chaotic maps are chosen for the hash buffers—either hybrid, LSS, or TSS—and
for the additive constant—either CLM, improved logistic, or TSS.

• Step 3: The secret values for X0 ∈ [0, 1] are selected as initial values to obtain Xn+1 of
the hash buffer (a, b, c, d, e, f, g, h) and Y0 ∈ [0, 1] to obtain Yn+1 additive constant Kt.

• Step 4: Xn+1 is multiplied by 256 and the output value, expressed in hexadecimal, is
converted to a DNA sequence.

• Step 5: Complementary rule is applied to the output of the DNA sequence, and then it
is turned back to hexadecimal value, which is written to the last eight bits in the hash
buffer a.

• Step 6: Xn+1 from step 3 is used again to obtain the second 8 bits of hash buffer a, and
the same process continues until 64 bits of buffer a are obtained; steps 4 and 5 are
repeated for each eight-bit set.

• Step 7: The last Xn+1 obtained from buffer a is considered X0 for buffer b, and steps 4
and 5 are repeated until all remaining hash buffers (c, d, e, f, g, and h) are obtained.

• Step 8: Each round takes, as input, the 512-bit buffer value, and updates the buffer
values using the 64-bit value derived from the current 1024-bit message schedule. Each
round also makes use of an additive constant indicating which of the 80 rounds is
currently in progress.

• Step 9: To obtain the first additive constant, steps 3 to 7 are repeated.

Mathematics 2022, 10, x FOR PEER REVIEW 10 of 22

Figure 8. Proposed Hash-512.

• Structure 1: a hybrid chaotic map is used by initializing buffer hash and CLM in

adaptive constant kt and using DNA encoding rule 0 and G6 complementary rule;

• Structure 2: the buffer hash is initialized with LSS, CLM is applied to adaptive con-

stant kt, and DNA encoding rule 5 and G1 complementary rule are used;

• Structure 3: the buffer hash is initialized with LSS, the improved logistic chaotic map

is applied to adaptive constant kt, and DNA encoding rule 5 and G3 complementary

rule are used;

• Structure 4: the buffer hash is initialized with TSS, which is then applied to adaptive

constant kt, and DNA encoding rule 2 and G5 complementary rule are used.

Table 3 shows that each structure has initial hash buffer values and additive constant

corresponding to the type of chaotic map and certain parameters.

Table 3. Lookup table for initializing hash buffer and additive constant.

 Parameter Initial Hash Buffer Additive Constant

S
tr

u
ct

u
re

 1

Hybrid:

r = 0.9, a = 0.995, b =

1.8, N = 10, X0 = 0.5

CLM:

r = 3.9, N = 80, K =

24, Y0 = 0.5

a = 6d5b3ce95e42fd09

b = ac2bb11e816c5938

c = 8e6045061c786753

d = aa2fc0f52ebcfe05

e = 675227a241f91e7e

f = 5a39e27c6b5835d3

g = 165f440108249951

h = 9c4c17654e1f836a

k1 = a99c8684073fdcf6

k2 = d708ff9ebf9cf7f4

k3 = 4ed248e568f52a86

k4 = 8be68516d917dbef

k77 = fbb5fe2f58e7ef1b

k78 = 830eeab0eff1aeae

k79 = e8f8dfac50b5fe4d

k80 = f88bfb8d813e7aed

Figure 8. Proposed Hash-512.

When we applied 45 various chaotic map types to the hash buffer and additive
constants of SHA-512 and conducted all simulation experiments, it was found that using
these chaotic maps (improved logistic, CLM, TSS, LSS, and Hybrid) on SHA-512 with

Mathematics 2022, 10, 1333 10 of 21

specific types of DNA encoding rules and complementary rules, explained in structure
1, 2, 3, and 4, provide strong confusion and diffusion, as well as excellent distribution,
sensitivity, and robustness against collisions and meet-in-the-middle attacks.

• Structure 1: a hybrid chaotic map is used by initializing buffer hash and CLM in
adaptive constant kt and using DNA encoding rule 0 and G6 complementary rule;

• Structure 2: the buffer hash is initialized with LSS, CLM is applied to adaptive constant
kt, and DNA encoding rule 5 and G1 complementary rule are used;

• Structure 3: the buffer hash is initialized with LSS, the improved logistic chaotic map
is applied to adaptive constant kt, and DNA encoding rule 5 and G3 complementary
rule are used;

• Structure 4: the buffer hash is initialized with TSS, which is then applied to adaptive
constant kt, and DNA encoding rule 2 and G5 complementary rule are used.

Table 3 shows that each structure has initial hash buffer values and additive constant
corresponding to the type of chaotic map and certain parameters.

Table 3. Lookup table for initializing hash buffer and additive constant.

Parameter Initial Hash Buffer Additive Constant

St
ru

ct
ur

e
1 Hybrid:

r = 0.9, a = 0.995, b = 1.8, N =
10, X0 = 0.5

CLM:
r = 3.9, N = 80, K = 24, Y0 = 0.5

a = 6d5b3ce95e42fd09
b = ac2bb11e816c5938
c = 8e6045061c786753
d = aa2fc0f52ebcfe05
e = 675227a241f91e7e
f = 5a39e27c6b5835d3
g = 165f440108249951
h = 9c4c17654e1f836a

k1 = a99c8684073fdcf6
k2 = d708ff9ebf9cf7f4

k3 = 4ed248e568f52a86
k4 = 8be68516d917dbef
k77 = fbb5fe2f58e7ef1b
k78 = 830eeab0eff1aeae
k79 = e8f8dfac50b5fe4d
k80 = f88bfb8d813e7aed

St
ru

ct
ur

e
2 LSS:

r = 3.9, N = 10, X0 = 0.5
CLM:

r = 3.9, N = 80, K = 24, Y0 = 0.5

a = fffffb1550d687fe
b = 113bace070f3349d
c = 52e070f33399f527
d = f4319af52883f336
e = db76fe081a5ceb4b
f = 9bf335a4e753e070
g = 3299f42e9bf136aa
h = 70f3349de854de6e

k1 = a99c8684073fdcf6
k2 = d708ff9ebf9cf7f4

k3 = 4ed248e568f52a86
k4 = 8be68516d917dbef
k77 = fbb5fe2f58e7ef1b
k78 = 830eeab0eff1aeae
k79 = e8f8dfac50b5fe4d
k80 = f88bfb8d813e7aed

St
ru

ct
ur

e
3 LSS:

r = 3.9, N = 10, X0 = 0.5
Improved logistic:

a = 4, b = 108, alpha = 12,345,
N = 9, Y0 = 0.5

a = fffffb1550d687fe
b = 113bace070f3349d
c = 52e070f33399f527
d = f4319af52883f336
e = db76fe081a5ceb4b
f = 9bf335a4e753e070
g = 3299f42e9bf136aa
h = 70f3349de854de6e

k1 = 64ca97e7026df731
k2 = f47e896ca60190e

k3 = 5ea7206d450fa092
k4 = 4a6eca97e7026df7
k77 = fa092fc8ae5ac98

k78 = e5e5d4116787cf4c
k79 = 3b131174ea4a6eca
k80 = 8330a1437ff2982c

St
ru

ct
ur

e
4

TSS:
r = 3.9

N = 10, X0 = 0.5, Y0 = 0.9

a = 6b43d9f2a25da192
b = 30e087e0f925d9e
c = caf3af5094d9c598

d = 9688d7e837d134cc
e = 60ba87b1989540bf
f = fe3e91c22e5f044c

g = 6dad2a49859f1e18
h = f979897995e4d17

k1 = 3139d540b95ff723
k2 = 90e8e811355ffc4b
k3 = 6b173f9a382490e5
k4 = 6cf4fe2c859e63b0

k77 = 9dc80f916a938ed1
k78 = b21cc378aa9d2900
k79 = d6c101d634aff73a
k80 = 9b087c315739b7c2

3. Results

To show the advantage of the proposed hash function, we present a performance
analysis that considers the distribution of hash value, diffusion and confusion, sensitivity
to the message, and the collision resistance. The proposed hash function can work on a
message up to 2128.

Mathematics 2022, 10, 1333 11 of 21

3.1. Hash Value Distribution

One of the most important characteristics of hash functions is to produce uniformly
distributed output. Simulation experiments were performed on the following sentence as a
simple example: “The people of Egypt are intelligent people with glorious history who left
their mark on civilization”.

In this paper, the distribution of the hash value was evaluated by hashing 1000 different
messages and representing the hash values in hexadecimal for distributional analysis.
Figure 9 shows the distributions for all test structures (noted in Section 2.4) by counting the
occurrence of all hexadecimal digits (0-F).

Mathematics 2022, 10, x FOR PEER REVIEW 12 of 22

Figure 9. Hash value distribution for 1000 messages.

3.2. Linear Complexity

To determine this property [42], the 0 s and 1 values were counted in the binary-

encoded hash output. For an ideal hash function, the two counts should be equal. Figure

10 shows the linear complexity of hash values for 1000 input different messages.

Figure 10. linear complexity of hash for 1000 different messages.

3.3. Sensitivity Analysis

We investigated the sensitivity of the proposed hash function by comparing the ef-

fects of five variants to the input message, which means that a small change in its input

message will generate a considerable change in the hash value.

C1: The original plaintext message;

C2: Alter ‘.’ At the end of a sentence to ‘/’;

C3: Flip all letters (a) in a sentence to (o);

C4: Change E in Egypt word to e;

C5: Add 5 before history.

Tables 4–7 show the resulting hash values listed in hexadecimal format for all cases,

followed by the number of changed bits compared with the hash value for C1.

The simulation results in Figure 11 show that the proposed hash function has a high

sensitivity to the least-different bits in the message.

Figure 9. Hash value distribution for 1000 messages.

3.2. Linear Complexity

To determine this property [42], the 0 s and 1 values were counted in the binary-
encoded hash output. For an ideal hash function, the two counts should be equal. Figure 10
shows the linear complexity of hash values for 1000 input different messages.

Mathematics 2022, 10, x FOR PEER REVIEW 12 of 22

Figure 9. Hash value distribution for 1000 messages.

3.2. Linear Complexity

To determine this property [42], the 0 s and 1 values were counted in the binary-

encoded hash output. For an ideal hash function, the two counts should be equal. Figure

10 shows the linear complexity of hash values for 1000 input different messages.

Figure 10. linear complexity of hash for 1000 different messages.

3.3. Sensitivity Analysis

We investigated the sensitivity of the proposed hash function by comparing the ef-

fects of five variants to the input message, which means that a small change in its input

message will generate a considerable change in the hash value.

C1: The original plaintext message;

C2: Alter ‘.’ At the end of a sentence to ‘/’;

C3: Flip all letters (a) in a sentence to (o);

C4: Change E in Egypt word to e;

C5: Add 5 before history.

Tables 4–7 show the resulting hash values listed in hexadecimal format for all cases,

followed by the number of changed bits compared with the hash value for C1.

The simulation results in Figure 11 show that the proposed hash function has a high

sensitivity to the least-different bits in the message.

Figure 10. Linear complexity of hash for 1000 different messages.

3.3. Sensitivity Analysis

We investigated the sensitivity of the proposed hash function by comparing the effects
of five variants to the input message, which means that a small change in its input message
will generate a considerable change in the hash value.

C1: The original plaintext message;
C2: Alter ‘.’ At the end of a sentence to ‘/’;
C3: Flip all letters (a) in a sentence to (o);
C4: Change E in Egypt word to e;
C5: Add 5 before history.

Tables 4–7 show the resulting hash values listed in hexadecimal format for all cases,
followed by the number of changed bits compared with the hash value for C1.

Mathematics 2022, 10, 1333 12 of 21

Table 4. Hash values of first structure.

Hash Value of 1st Case (Hash_Hybrid_CLM) Changed Bits

C1
76ec2e55956e3d03d56391b1db4ddadb7beb8b003
afcb8ad6fef744314f1ef55418a84c62c3a00ca6306

4686befa06aeca58cfaa0289a1dc0e915da54e42f333

C2
54947ac5855264797ee1f4eee2b619a359548fd78c
8b640c5276793dff60e90b69e3d0a06fab29b2fc8f3
30cc6fc2530c6862e92ce331922c3482fa5cffa7151

257

C3
39f72e29f55a7daa1b1fa0abbb595fba0f3f06f2e160
dd219022def05641ff0849689b9986a5e064e18a49

70ee8da76c47c3ff37fe8f4c7965f19f6e7d1f3b6f
270

C4
9bb66539582bf4d443e158aa565c111a924c113d07
16e5e42193ce3d9fdd31b183d09ed06f40e1f4d60ce
4d7b9117737dc74acbcae7f3817cce119adbb2994c8

259

C5
54c94f2c6dc95bf68982a8519433161c48134ad6d8
d928c5173713f5e0d6915344f5b28c4e8e29c10404

0554faa512d8d8fae363d73e7c5b628603ddf2b9d0ae
238

Table 5. Hash values of second structure.

Hash Value of 2nd Case (Hash_LSS_CLM) Changed Bits

C1
5cde39d1a7e0ce19e1550c37e8befc57551c4d2949b
864e2da0f714edd2941cd952dde5e7c780dfec773f4
4487d768929bf34cd731e2106a743312f475846bc5

C2
a954350f1ac222201c41176199ac7e6297075848b4
02e8a61048b6c76af076b3fb2f73c7af8ab69e14d2f
6049995654179cc2cd6e45af6049f0de757a5655168

257

C3
7b923f81f921fa6d1ccef45d4f3d672c99d2a5775d6
5ef635c65fc24c4f4b483838417335603e72b31578
1d2fd4ee01a2ec297508c0e2f20447f15bb0feecfae

265

C4
797584a71b64c1a882d1d0d438ca9d9dc367ff5899a
48ade6ec2d3eae25cae60d594f04477a807c588b490
8deb9ca40e81022600328e767dbad5be0854daed21

261

C5
7d64060613bb02ed718cbdbb901b6d2e61c898d0ed
3a549876047c8a94012900995d0abb5d826419f84e
0a6477d6be5d3f06cf07b813585f8e931d5e198a586

251

Table 6. Hash values of third structure.

Hash Value of the 3rd Structure (Hash_LSS_ Nlogistic) Changed Bits

C1
a74901fcb8376c137a81a0c84deba7c4dc8781a5dd5
256736e755fdf33bf0873b9f7bdf62a9600051b1a68
7c3551d21890fcc7d87305a22557b6821f47608972

C2
81c74c921f7f8e53dafb76c02c5e3e1a15537fefc791
4aab1f5886452a258ae6b972d24311c65c183a4ec0
997d46614baab20b6b59aef712e5e674553b13b011

245

C3
c0431d33acf8e118a0e8a2be0d1d7c67f43458f5f26
f92c70c028c970a4cf8b4f9b974cf8c2cae52aa393d
8a2cf221713061af521ae20b2718cac6225b3a6a5a

254

C4
512f1247e20d1b18d208300842071dfa72fa926c5c
1ac13d89f2c530e067e7c383067d5431d68395e661

a9e5e50a582b16c6238341d4b1c19cc3676752392768
259

C5
26f05090636b04f1c123060f3655591fa315801c2d

f47c6eea2330bf62041ae5f6d73d784b887ed9d2e35
310e097d1adce93db522785cee9eafa7dd206a59010

261

Mathematics 2022, 10, 1333 13 of 21

Table 7. Hash values of fourth structure.

Hash Value of the 4th Structure (Hash_TSS_TSS) Changed Bits

C1
9cbe1f41638067a6b10a1d53fdb51aea2fa0484c257
c22b8705daff6809c4247a1bcdd36b283a88b695bc
3cb493f045c5f509a1483b926b1fed846ffdb266e7d

C2
fab43d0aeb737cff079a2a6f0885452780d0125cd92
bb89e9824136aec488a7ad1437c62e9f1aa4874aa4

83aff49438abd8a2b8ebdec6852babade2a01124496
262

C3
b5ee7a4a04add2922af173bb8fb171d5794683fd2e
f715945fa94af9d2bf708930e9a5fd25e0cee19748

900e4ea3b0d7b2a92f91fcee7677762f1fd2a5a0ff16
270

C4
66380959269b1de562517ea65a3ed64c4c042b5e2e6
050a73d16a07ae72a69c1e676180c321c56c1fb0b8b
0d3f14e415ce8320c61849b59b64a7d6e66336c6f5

244

C5
24764345aa9f3895c5cd58acdcdfdfd3f7e024d4970
90c3c333926aefe0948ad1ed0d4122978d03d26a5d
b8e917688a940b004f2043acac5e0c48f811fd38644

258

The simulation results in Figure 11 show that the proposed hash function has a high
sensitivity to the least-different bits in the message.

Mathematics 2022, 10, x FOR PEER REVIEW 13 of 22

(a)

(b)

(c)

Figure 11. Cont.

Mathematics 2022, 10, 1333 14 of 21

Mathematics 2022, 10, x FOR PEER REVIEW 13 of 22

(a)

(b)

(c)

Mathematics 2022, 10, x FOR PEER REVIEW 14 of 22

(d)

Figure 11. Hash values under different conditions: (a) first structure; (b) second structure; (c) third

structure; (d) fourth structure.

Table 4. Hash values of first structure.

 Hash Value of 1st Case (Hash_Hybrid_CLM) Changed Bits

C1

76ec2e55956e3d03d56391b1db4ddadb7beb8b003

afcb8ad6fef744314f1ef55418a84c62c3a00ca6306

4686befa06aeca58cfaa0289a1dc0e915da54e42f333

C2

54947ac5855264797ee1f4eee2b619a359548fd78c

8b640c5276793dff60e90b69e3d0a06fab29b2fc8f3

30cc6fc2530c6862e92ce331922c3482fa5cffa7151

257

C3

39f72e29f55a7daa1b1fa0abbb595fba0f3f06f2e160

dd219022def05641ff0849689b9986a5e064e18a49

70ee8da76c47c3ff37fe8f4c7965f19f6e7d1f3b6f

270

C4

9bb66539582bf4d443e158aa565c111a924c113d07

16e5e42193ce3d9fdd31b183d09ed06f40e1f4d60ce

4d7b9117737dc74acbcae7f3817cce119adbb2994c8

259

C5

54c94f2c6dc95bf68982a8519433161c48134ad6d8

d928c5173713f5e0d6915344f5b28c4e8e29c10404

0554faa512d8d8fae363d73e7c5b628603ddf2b9d0ae

238

Table 5. Hash values of second structure.

 Hash Value of 2nd Case (Hash_LSS_CLM) Changed Bits

C1

5cde39d1a7e0ce19e1550c37e8befc57551c4d2949b

864e2da0f714edd2941cd952dde5e7c780dfec773f4

4487d768929bf34cd731e2106a743312f475846bc5

C2

a954350f1ac222201c41176199ac7e6297075848b4

02e8a61048b6c76af076b3fb2f73c7af8ab69e14d2f

6049995654179cc2cd6e45af6049f0de757a5655168

257

C3

7b923f81f921fa6d1ccef45d4f3d672c99d2a5775d6

5ef635c65fc24c4f4b483838417335603e72b31578

1d2fd4ee01a2ec297508c0e2f20447f15bb0feecfae

265

C4

797584a71b64c1a882d1d0d438ca9d9dc367ff5899a

48ade6ec2d3eae25cae60d594f04477a807c588b490

8deb9ca40e81022600328e767dbad5be0854daed21

261

C5

7d64060613bb02ed718cbdbb901b6d2e61c898d0ed

3a549876047c8a94012900995d0abb5d826419f84e

0a6477d6be5d3f06cf07b813585f8e931d5e198a586

251

Figure 11. Hash values under different conditions: (a) first structure; (b) second structure; (c) third
structure; (d) fourth structure.

3.4. Confusion and Diffusion Analyses

The confusion and diffusion of the hashing procedures were evaluated as follows:

1. The hash value for an input message was calculated;
2. Single bits in the message, and the hash value was calculated again;
3. The two hashes were compared to identify the difference between them;
4. Steps (1–3) were repeated for N times.

Table 8 shows the six statistics used in the analysis defined above and compared with
previous studies [41–44]. Ref. [41] used chaotic sponge construction and DNA sequence
on a hash function; specifically, DNA sequence was used to design state transition rules
of (DCFSA). Ref. [42] used a hyperchaotic Lorenz system in the hash algorithm to absorb
input messages via multiple parameters time-varying perturbation. Ref. [43] analyzed
two-keyed hash function structures by proposing the use of a chaotic neural network
Sponge construction was applied in these structures, resulting in two variants of hash value
lengths, i.e., 256 and 512 bits. Ref. [44] used a hash function based on two Tinkerbell maps
filtered with an irregular decimation rule.

Mathematics 2022, 10, 1333 15 of 21

Table 8. Confusion and diffusion test results for 1000-message tests.

Bmin Bmax Mean P% ∆B ∆P

SHA-512 212 297 256.09 50.018 11.13 2.174

Structure1 219 291 256.0586 50.011 11.67 2.279

Structure 2 219 293 256.032 50.006 10.92 2.133

Structure 3 222 291 255.9648 49.993 11.34 2.214

Structure 4 226 292 256.0244 50.0068 11.46 2.24

Ref. [42]–Structure 1 223 291 256.496 50.05 11.41 2.229

Ref. [42]–Structure 2 215 293 254.862 49.778 10.95 2.138

Ref. [43] 222 287 256.39 50.08 11.39 2.22

Ref. [44]–Structure 1 217 293 256.2 50.04 11.20 2.18

Ref. [44]–Structure 2 214 291 255.90 49.98 11.37 2.22

Ref. [44]–Structure 3 215 296 255.53 49.90 11.41 2.23

Ref. [45]–Structure 1 214 287 256.03 50.01 11.48 2.24

Ref. [45]–Structure 2 229 292 256.45 50.08 11.32 2.21

• Minimum number of changed bit: Bmin =min (Bi)
N
1 ;

• Maximum changed bit number: Bmax = max (Bi)
N
1 ;

• Mean number of changed bits: B = ∑N
1

Bi
N ;

• Mean changed probability: P = B
512 × 100%;

• Standard variance of the changed bit number ∆B =
√

1
N−1 ∑N

1
(
Bi− B

)2;

• Standard variance of probability ∆P=

√
1

N−1 ∑N
1

(
Bi
N − P

)2
.

The same analysis was undertaken with N = 256, 512, 1024, 2048, and 10,000, as shown
in Tables 9–12, where N is the number of the different messages. According to the data
evaluation in Table 8, the mean number of changed bits B and the mean changed probability
P% are both very close to the ideal value of 256 bits and 50, respectively. In addition, ∆B
and ∆P indicate the degree of stability; the closer to zero, the more stable. Figure 12 shows
that the mean number of changed bits B is close to value of 256, and this is the perfect value
of B that can be reached. The standard variances are low, indicating that the confusion and
diffusion of the proposed hash function are ideal.

Table 9. Statically results for structure 1 for a number of different tests.

N = 256 512 1024 2048 10,000

Bmin 228 224 219 214 210

Bmax 287 287 291 297 303

Mean 256.336 256.5 256.059 256.106 256.178

P% 50.066 50.098 50.011 50.021 50.034

∆B 11.401 11.164 11.144 11.364 11.202

∆P 2.227 2.180 2.176 2.220 2.20

Mathematics 2022, 10, 1333 16 of 21

Table 10. Statically results for structure 2 for a number of different tests.

N = 256 512 1024 2048 10,000

Bmin 227 219 219 219 217

Bmax 293 293 293 298 303

Mean 255.648 255.628 256.189 256.320 255.911

P% 49.931 49.928 50.037 50.062 49.983

∆B 11.1031 10.791 10.907 11.073 10.80

∆P 2.169 2.107 2.130 2.162 2.05

Table 11. Statically results for structure 3 for a number of different tests.

N = 256 512 1024 2048 10,000

Bmin 228 226 222 212 213

Bmax 290 290 291 294 300

Mean 256.402 255.978 255.965 255.668 256.024

P% 50.079 49.995 49.9931 49.935 50.005

∆B 11.265 11.412 11.336 11.394 11.20

∆P 2.200 2.229 2.214 2.225 2.110

Table 12. Statically results for structure 4 for a number of different tests.

N = 256 512 1024 2048 10,000

Bmin 226 226 226 225 207

Bmax 283 292 292 292 300

Mean 256.063 256.433 256.024 256.388 255.963

P% 50.012 50.085 50.005 50.076 49.993

∆B 11.127 11.641 11.505 11.404 10.95

∆P 2.173 2.274 2.247 2.227 2.175

Mathematics 2022, 10, x FOR PEER REVIEW 16 of 22

value lengths, i.e., 256 and 512 bits. Ref. [44] used a hash function based on two Tinkerbell

maps filtered with an irregular decimation rule.

• Minimum number of changed bit: Bmin =min (Bi)1
N;

• Maximum changed bit number: Bmax = max (Bi)1
N;

• Mean number of changed bits: B̅ = ∑
Bi

N

N
1 ;

• Mean changed probability: P =
B̅

512
 × 100%;

• Standard variance of the changed bit number ΔB =√
1

N−1
∑ (Bi − B̅)2N
1 ;

• Standard variance of probability ΔP=√
1

N−1
∑ (

Bi

N
− P)N

1

2

.

The same analysis was undertaken with N = 256, 512, 1024, 2048, and 10,000, as shown

in Tables 9–12, where N is the number of the different messages. According to the data

evaluation in Table 8, the mean number of changed bits B̅ and the mean changed proba-

bility P% are both very close to the ideal value of 256 bits and 50, respectively. In addition,

ΔB and ΔP indicate the degree of stability; the closer to zero, the more stable. Figure 12

shows that the mean number of changed bits B̅ is close to value of 256, and this is the

perfect value of �̅� that can be reached. The standard variances are low, indicating that the

confusion and diffusion of the proposed hash function are ideal.

Figure 12. Results and histograms of the average number of changed bits.

Table 8. Confusion and diffusion test results for 1000-message tests.

 Bmin Bmax Mean P% ΔB ΔP

SHA-512 212 297 256.09 50.018 11.13 2.174

Structure1 219 291 256.0586 50.011 11.67 2.279

Structure 2 219 293 256.032 50.006 10.92 2.133

Structure 3 222 291 255.9648 49.993 11.34 2.214

Structure 4 226 292 256.0244 50.0068 11.46 2.24

Ref. [42]–Structure 1 223 291 256.496 50.05 11.41 2.229

Ref. [42]–Structure 2 215 293 254.862 49.778 10.95 2.138

Ref. [43] 222 287 256.39 50.08 11.39 2.22

Ref. [44]–Structure 1 217 293 256.2 50.04 11.20 2.18

Ref. [44]–Structure 2 214 291 255.90 49.98 11.37 2.22

Ref. [44]–Structure 3 215 296 255.53 49.90 11.41 2.23

Ref. [45]–Structure 1 214 287 256.03 50.01 11.48 2.24

Ref. [45]–Structure 2 229 292 256.45 50.08 11.32 2.21

Figure 12. Results and histograms of the average number of changed bits.

Mathematics 2022, 10, 1333 17 of 21

3.5. Hash Attacks

Attacking in a hash means breaking a security property of hash functions. Attacks
may focus on the algorithm of compression functions or the structure of hash functions [46].
There are two types of attacks on hash functions: brute force and cryptanalysis.

3.5.1. Brute Force Attack

Brute force attacks depend not on the algorithm but on the bit length of the hash
algorithm. For a hash code of length n, the effort level required to resist different brute
force classical attacks on hash functions is as follows:

Preimage and Second Preimage Attacks

In a preimage attack, the attacker has the hash of a particular message and tries to
determine what this message is, such that H(M) = h. In the second preimage attack, the
attacker has the message M1 and hash value of H1, and it tries to find another message M2
that maps to the same hash value H1.

Collision Resist Attack

Collision resistance is also used to measure the security of the hash algorithm. Hash
collision attacks attempt to find two string messages that hash to the same value. The
collision can be analyzed by calculating the hash value of the chosen message and extracting
a thousand different messages from the original by toggling one bit at a time with “0” and
“1”, and then comparing the resulting hash values. This is conveniently performed via
ASCII encoding, comparing characters at matching locations to count the number of hits ω.
Figure 13 shows the distribution of the number of hits. The relation between a number of
different tests and the number of hits is explained in [47].

WN(ω) = N× prob(ω) = N
s!

ω!(s−ω)!
(

1
28)

ω

(1− 1
28)

s−ω
(8)

where N is the number of tests, and s = L/8 where L is the length of the hash function.
WN(ω) in Formula (8) is the theoretical value given in Table 13, which also shows how the
outputs differ between hashing under test structures 1, 2, 3, and 4. Therefore, an absolute
difference can be proved as shown in Formula (9).

Mathematics 2022, 10, x FOR PEER REVIEW 18 of 22

3.5.1. Brute Force Attack

Brute force attacks depend not on the algorithm but on the bit length of the hash

algorithm. For a hash code of length n, the effort level required to resist different brute

force classical attacks on hash functions is as follows:

Preimage and Second Preimage Attacks

In a preimage attack, the attacker has the hash of a particular message and tries to

determine what this message is, such that H(M) = h. In the second preimage attack, the

attacker has the message M1 and hash value of H1, and it tries to find another message M2

that maps to the same hash value H1.

Collision Resist Attack

Collision resistance is also used to measure the security of the hash algorithm. Hash

collision attacks attempt to find two string messages that hash to the same value. The

collision can be analyzed by calculating the hash value of the chosen message and extract-

ing a thousand different messages from the original by toggling one bit at a time with “0”

and “1”, and then comparing the resulting hash values. This is conveniently performed

via ASCII encoding, comparing characters at matching locations to count the number of

hits ω. Figure 13 shows the distribution of the number of hits. The relation between a

number of different tests and the number of hits is explained in [47].

WN(ω) = N × prob(ω)= N
s!

ω!(s−ω)!
(
1

28
)ω(1 −

1

28
)s−ω (8)

where N is the number of tests, and s = L/8 where L is the length of the hash function.

WN(ω) in Formula (8) is the theoretical value given in Table 13, which also shows how

the outputs differ between hashing under test structures 1, 2, 3, and 4. Therefore, an abso-

lute difference can be proved as shown in Formula (9).

D_hash = ∑ (|t(mi) − t(m′i)|)
N

i=1
 (9)

Converting the hash value from ASCII format to decimal and calculating the differ-

ences between them is repeated 1000 times. Absolute differences are compared in Table

14. The theoretical value of mean/character is close to 177.66, as explained in Formula (10)

for 512-bit hash value length (L = 512). Basing a cryptographic hash algorithm on chaotic

maps provides increased security against brute force attacks.

X̅ (mean/character) = L/3 (10)

Figure 13. Distribution of the number of hits.
Figure 13. Distribution of the number of hits.

D_hash = ∑N
i=1

(∣∣t(mi)− t
(
m′i
)∣∣) (9)

Converting the hash value from ASCII format to decimal and calculating the differ-
ences between them is repeated 1000 times. Absolute differences are compared in Table 14.
The theoretical value of mean/character is close to 177.66, as explained in Formula (10) for

Mathematics 2022, 10, 1333 18 of 21

512-bit hash value length (L = 512). Basing a cryptographic hash algorithm on chaotic maps
provides increased security against brute force attacks.

X(mean/character) = L/3 (10)

Table 13. Number of hits for all structures of the proposed hash function for N = 1000.

Number of Hits (ω)

0 1 2 3 4 64

Theoretical value 797.10 200.05 24.71 2.00 0.11 1.42 × 10−56

Structure 1 820 176 27 1 0 0

Structure 2 812 187 23 2 0 0

Structure 3 802 198 22 2 0 0

Structure 4 809 194 0 0 0 0

Table 14. Absolute differences between two hash values for 1000 different messages.

Absolute Difference

Max. Min. Mean Mean/Character

SHA-512 - - 5461.33 170.67
Structure 1 6785 3863 5447.148 170.22
Structure 2 7008 3946 5295.425 165.48
Structure 3 6926 4143 5462.526 170.70
Structure 4 6908 3801 5451.65 170.36

3.5.2. Cryptanalytic Attacks

In this type of attack, some attacks are performed to find specific weaknesses in the
structure of a hash algorithm, and the amount of effort is expected to be less than the
effort in the brute force attack. The meet-in-the-middle attack is considered a generic
cryptographic approach that is applied to cryptographic systems based on block ciphers.

Meet-in-the-Middle Attack

This attack seeks collisions on intermediate hash values instead of the final hash
value [48]. Meet-in-the-middle (MITM) attacks can be analyzed by substitution of the last
block in the original message to find conflicts. In this attack process, we kept the final hash
unchanged but replaced Msg1 with Msg2. The following steps were performed:

1. Msg1 = (M1, M2, M3, . . . , Mn) can be replaced by Msg2 = (M1, M2, M3, . . . , Mn”). The
second time, “advanced culture” was replaced with “civilization”;

2. The hash value was calculated for both the original message and the replaced message;
3. The number of bits different between the original and replaced message was counted.

For an ideal hash function, the number of differing bits should be close to 256 bits, as
shown in Table 15.

Table 15. Different bits in meet-in-the-middle attack.

Different Bits in Meet in the Middle Attack

Structure 1 254

Structure 2 259

Structure 3 260

Structure 4 245

Mathematics 2022, 10, 1333 19 of 21

4. Conclusions

This proposal described improvements to SHA-512 by using the different types of 1D
chaotic maps (improved logistic, CLM, TSS, LSS, and hybrid) and DNA sequences. The
main improvements focused on changing the fixed role of the hash buffer and additive
constant to one that depends on the sensitivity of changes in initial condition and control
parameters and uses DNA features and binary coding technology with complementary
rules instead of constant values. This paper proposed four different structures to maxi-
mize improvements in the performance and security of SHA-512. Several analyses were
conducted on the four structures, with simulation experiments results showing that the
proposed design had superior distribution and sensitivity, as well as strong confusion and
diffusion and robustness against collisions and meet-in-the-middle attacks.

Author Contributions: Conceptualization, N.E.E.-M., W.I.E.-S., T.O.D., A.S.M. and A.Y.H.; method-
ology, N.E.E.-M., W.I.E.-S., T.O.D., A.S.M. and A.Y.H.; software, N.E.E.-M., W.I.E.-S., T.O.D., A.S.M.
and A.Y.H.; formal analysis, N.E.E.-M., W.I.E.-S., T.O.D., A.S.M. and A.Y.H.; investigation, N.E.E.-M.,
W.I.E.-S., T.O.D., A.S.M. and A.Y.H.; writing—original draft preparation, N.E.E.-M.; writing—review
and editing, N.E.E.-M. and W.I.E.-S.; supervision, W.I.E.-S., T.O.D., A.S.M. and A.Y.H.; funding
acquisition, N.E.E.-M., W.I.E.-S., T.O.D., A.S.M. and A.Y.H. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mohamed, M.H.; El Sobky, W.I.; Hamdy, S. Elliptic Curve Digital Signature Algorithm Challenges and Development Stages. Int. J.

Innov. Technol. Explor. Eng. 2021, 10, 121–128. [CrossRef]
2. Naif, J.R.; Abdul-Majeed, G.H.; Farhan, A.K. Secure IOT System Based on Chaos-Modified Lightweight AES. In Proceedings of

the 2019 International Conference on Advanced Science and Engineering, Zakho-Duhok, Iraq, 2–4 April 2019; pp. 1–6. [CrossRef]
3. Farhan, A.K.; Mahdi, M.S. Proposal Dynamic Keys Generator for DES algorithms. Islamic Coll. Univ. J. 2014, 29, 25–48.
4. Kadhim, A.; Salih, M. Proposal of New Keys Generator for DES Algorithms Depending on Multi Techniques. Eng. Technol. J.

2014, 32, 94–106.
5. Yassein, H.; Al-Saidi, N.M.G.; Farhan, A. A new NTRU cryptosystem outperforms three highly secured NTRU-analog systems

through an innovational algebraic structure. J. Discret. Math. Sci. Cryptogr. 2020, 25, 523–542. [CrossRef]
6. Turner, J.M. The Keyed-Hash Message Authentication Code. FIPS Publications. 2008. Volume 2019, pp. 1–20. Available online:

http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf (accessed on 5 August 2019).
7. An Advanced Signature Scheme: Schnorr Algorithm and its Benefits to the Bitcoin Ecosystem. 2018. Available online: https:

//www.politesi.polimi.it/bitstream/10589/144372/1/main.pdf (accessed on 22 January 2021).
8. NIST. FIPS 186-2: Digital Signature Standard (DSS). FIPS Publications. 2000. Volume 2, pp. 86–92. Available online: http:

//scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:FIPS+186-3+Digital+Signature+Standard+(+DSS+)#0 (accessed on
19 May 2019).

9. Kadhim, A.; Khalaf, S. New Approach for Security Chatting in Real Time. Int. J. Emerg. Trends Technol. Comput. Sci. 2015, 4, 30–36.
10. Zheng, Z.; Xie, S.; Dai, H.; Chen, X.; Wang, H. An Overview of Blockchain Technology: Architecture, Consensus, and Future

Trends. In Proceedings of the 2017 IEEE 6th International Congress on Big Data (BigData Congress), Honolulu, HI, USA, 25–30
June 2017; pp. 557–564. [CrossRef]

11. Delahaye, J.-P. Cryptocurrencies and Blockchains. Inference Int. Rev. Sci. 2016, 2, 1–86. [CrossRef]
12. Wang, J.; Liu, G.; Chen, Y.; Wang, S. Construction and Analysis of SHA-256 Compression Function Based on Chaos S-Box. IEEE

Access 2021, 9, 61768–61777. [CrossRef]
13. Priyadarshini, I. Introduction to Blockchain Technology. In Cyber Security in Parallel and Distributed Computing: Concepts, Techniques,

Applications and Case Studies; Scrivener Publishing LLC: Beverly, MA, USA, 2019; pp. 91–107. [CrossRef]
14. Vujičić, D.; Jagodić, D.; Rand̄ić, S. Blockchain technology, bitcoin, and Ethereum: A brief overview. In Proceedings of the 2018

17th International Symposium INFOTEH-JAHORINA (INFOTEH), East Sarajevo, Bosnia and Herzegovina, 21–23 March 2018;
pp. 1–6. [CrossRef]

http://doi.org/10.35940/ijitee.J9433.08101021
http://doi.org/10.1109/icoase.2019.8723807
http://doi.org/10.1080/09720529.2020.1741218
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
https://www.politesi.polimi.it/bitstream/10589/144372/1/main.pdf
https://www.politesi.polimi.it/bitstream/10589/144372/1/main.pdf
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:FIPS+186-3+Digital+Signature+Standard+(+DSS+)#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:FIPS+186-3+Digital+Signature+Standard+(+DSS+)#0
http://doi.org/10.1109/bigdatacongress.2017.85
http://doi.org/10.37282/991819.16.38
http://doi.org/10.1109/ACCESS.2021.3071501
http://doi.org/10.1002/9781119488330.ch6
http://doi.org/10.1109/infoteh.2018.8345547

Mathematics 2022, 10, 1333 20 of 21

15. El Sobky, W.I.; Gomaa, S.H.; Hassan, A.Y. A-Survey-of-Blockchain-from-the-Viewpoints-of-Applications-Challenges-and-Chances.
Int. J. Sci. Eng. 2021, 12, 11.

16. FIPS Pub 180-1; Secure Hash Standard. NIST: Gaithersburg, MD, USA, 1995; Volume 17, p. 15.
17. Stallings, W. Communications, the William Stallings Books on Computer Data and Computer Communications, 7th ed.; Pearson: Upper

Saddle River, NJ, USA, 2011; p. 139.
18. Ibrahim, A.F.S. New Secure Solutions for Privacy and Access Control in Health Information Exchange. Ph.D. Thesis, University of

Kentucky, Lexington, KY, USA, 2016; p. 171. Available online: https://search.proquest.com/docview/1819468453?accountid=13
460%0Ahttp://zp2yn2et6f.search.serialssolutions.com/directLink?&atitle=New+secure+solutions+for+privacy+and+access+
control+in+Health+Information+Exchange&author=Ibrahim%2C+Ahmed+Fouad+Shedeed&issn (accessed on 20 March 2020).

19. Seok, B.; Park, J.; Park, J.H. A Lightweight Hash-Based Blockchain Architecture for Industrial IoT. Appl. Sci. 2019, 9, 3740.
[CrossRef]

20. Martino, R.; Cilardo, A. Designing a SHA-256 processor for blockchain-based IoT applications. Internet Things 2020, 11, 100254.
[CrossRef]

21. Strogatz, S.; Friedman, M.; Mallinckrodt, A.J.; McKay, S. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology,
Chemistry, and Engineering. Comput. Phys. 1994, 8, 532. [CrossRef]

22. Ljupco, K.; Shiguo, L. Chaos-Based Cryptography; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011;
Volume 354. [CrossRef]

23. Liu, Y.; Luo, Y.; Song, S.; Cao, L.; Liu, J.; Harkin, J. Counteracting Dynamical Degradation of Digital Chaotic Chebyshev Map via
Perturbation. Int. J. Bifurc. Chaos 2017, 27, 1750033. [CrossRef]

24. Abbasy, M.R.; Nikfard, P.; Ordi, A.; Torkaman, M.R.N. DNA Base Data Hiding Algorithm. Int. J. New Comput. Archit. Appl. 2012,
2, 183–192.

25. Martino, R.; Cilardo, A. SHA-2 Acceleration Meeting the Needs of Emerging Applications: A Comparative Survey. IEEE Access
2020, 8, 28415–28436. [CrossRef]

26. Ali, A.M.; Farhan, A.K. A Novel Improvement with an Effective Expansion to Enhance the MD5 Hash Function for Verification of
a Secure E-Document. IEEE Access 2020, 8, 80290–80304. [CrossRef]

27. Alawida, M.; Samsudin, A.; Teh, J.S. Enhanced digital chaotic maps based on bit reversal with applications in random bit
generators. Inf. Sci. 2020, 512, 1155–1169. [CrossRef]

28. Mohammed, A.A.; Ibadi, A. A Proposed Non Feistel Block Cipher Algorithm. Qalaai Zanist Sci. J. 2017, 2, 64–71. [CrossRef]
29. Naif, J.R.; Abdul-Majeed, G.; Farhan, A.K. Internet of Things Security using New Chaotic System and Lightweight AES.

J. Al-Qadisiyah Comput. Sci. Math. 2019, 11, 45–52. [CrossRef]
30. Sadiq, A.T.; Farhan, A.K.; Hassan, S.A. A proposal to improve RC4 algorithm based on hybrid chaotic maps. J. Adv. Comput. Sci.

Technol. Res. 2016, 6, 74–81.
31. Fadhil, M.S.; Farhan, A.K.; Fadhil, M.N. Designing Substitution Box Based on the 1D Logistic Map Chaotic System. IOP Conf. Ser.

Mater. Sci. Eng. 2021, 1076, 012041. [CrossRef]
32. Cao, J.; Chugh, R. Chaotic behavior of logistic map in superior orbit and an improved chaos-based traffic control model. Nonlinear

Dyn. 2018, 94, 959–975. [CrossRef]
33. Kadhim, A.; Emad, H. Mouse Movement with 3D Chaotic Logistic Maps to Generate Random Numbers. Diyala J. Pure Sci. 2017,

13, 24–39. [CrossRef]
34. Farhan, A.K.; Ali, R.S.; Yassein, H.R.; Al-Saidi, N.M.G.; Abdul-Majeed, G.H. A new approach to generate multi S-boxes based on

RNA computing. Int. J. Innov. Comput. Inf. Control. 2020, 16, 331–348. [CrossRef]
35. Alzaidi, A.A.; Ahmad, M.; Doja, M.N.; Al Solami, E.; Beg, M.M.S. A New 1D Chaotic Map and β -Hill Climbing for

Generating Substitution-Boxes. IEEE Access 2018, 6, 55405–55418. [CrossRef]
36. Al Solami, E.; Ahmad, M.; Volos, C.; Doja, M.N.; Beg, M.M.S. A New Hyperchaotic System-Based Design for Efficient Bijective

Substitution-Boxes. Entropy 2017, 20, 525. [CrossRef]
37. Alawida, M.; Samsudin, A.; Teh, J.S.; Alshoura, W.H. Digital Cosine Chaotic Map for Cryptographic Applications. IEEE Access

2019, 7, 150609–150622. [CrossRef]
38. Zhou, Y.; Bao, L.; Chen, C.L.P. A new 1D chaotic system for image encryption. Signal Process. 2014, 97, 172–182. [CrossRef]
39. Mazloom, S.; Moghadam, A.-M.E. Color image encryption based on Coupled Nonlinear Chaotic Map. Chaos Solitons Fractals 2009,

42, 1745–1754. [CrossRef]
40. Zhang, T.; Li, S.; Ge, R.; Yuan, M.; Ma, Y. A Novel 1D Hybrid Chaotic Map-Based Image Compression and Encryption Using

Compressed Sensing and Fibonacci-Lucas Transform. Math. Probl. Eng. 2016, 2016, 7683687. [CrossRef]
41. Liu, H.; Wang, X.; Kadir, A. Image encryption using DNA complementary rule and chaotic maps. Appl. Soft Comput. 2012,

12, 1457–1466. [CrossRef]
42. Alawida, M.; Samsudin, A.; Alajarmeh, N.; Teh, J.S.; Ahmad, M.; Alshoura, W.H. A Novel Hash Function Based on a Chaotic

Sponge and DNA Sequence. IEEE Access 2021, 9, 17882–17897. [CrossRef]
43. Liu, H.; Kadir, A.; Liu, J. Keyed Hash Function Using Hyper Chaotic System with Time-Varying Parameters Perturbation. IEEE

Access 2019, 7, 37211–37219. [CrossRef]
44. Abdoun, N.; El Assad, S.; Hoang, T.M.; Deforges, O.; Assaf, R.; Khalil, M. Designing Two Secure Keyed Hash Functions Based on

Sponge Construction and the Chaotic Neural Network. Entropy 2020, 22, 1012. [CrossRef] [PubMed]

https://search.proquest.com/docview/1819468453?accountid=13460%0Ahttp://zp2yn2et6f.search.serialssolutions.com/directLink?&atitle=New+secure+solutions+for+privacy+and+access+control+in+Health+Information+Exchange&author=Ibrahim%2C+Ahmed+Fouad+Shedeed&issn
https://search.proquest.com/docview/1819468453?accountid=13460%0Ahttp://zp2yn2et6f.search.serialssolutions.com/directLink?&atitle=New+secure+solutions+for+privacy+and+access+control+in+Health+Information+Exchange&author=Ibrahim%2C+Ahmed+Fouad+Shedeed&issn
https://search.proquest.com/docview/1819468453?accountid=13460%0Ahttp://zp2yn2et6f.search.serialssolutions.com/directLink?&atitle=New+secure+solutions+for+privacy+and+access+control+in+Health+Information+Exchange&author=Ibrahim%2C+Ahmed+Fouad+Shedeed&issn
http://doi.org/10.3390/app9183740
http://doi.org/10.1016/j.iot.2020.100254
http://doi.org/10.1063/1.4823332
http://doi.org/10.1007/978-3-642-20542-2
http://doi.org/10.1142/S021812741750033X
http://doi.org/10.1109/ACCESS.2020.2972265
http://doi.org/10.1109/access.2020.2989050
http://doi.org/10.1016/j.ins.2019.10.055
http://doi.org/10.25212/lfu.qzj.2.2.08
http://doi.org/10.29304/jqcm.2019.11.2.571
http://doi.org/10.1088/1757-899X/1076/1/012041
http://doi.org/10.1007/s11071-018-4403-y
http://doi.org/10.24237/djps.1303.268B
http://doi.org/10.24507/ijicic.16.01.331
http://doi.org/10.1109/ACCESS.2018.2871557
http://doi.org/10.3390/e20070525
http://doi.org/10.1109/ACCESS.2019.2947561
http://doi.org/10.1016/j.sigpro.2013.10.034
http://doi.org/10.1016/j.chaos.2009.03.084
http://doi.org/10.1155/2016/7683687
http://doi.org/10.1016/j.asoc.2012.01.016
http://doi.org/10.1109/ACCESS.2021.3049881
http://doi.org/10.1109/ACCESS.2019.2896661
http://doi.org/10.3390/e22091012
http://www.ncbi.nlm.nih.gov/pubmed/33286780

Mathematics 2022, 10, 1333 21 of 21

45. Todorova, M.; Stoyanov, B.; Szczypiorski, K.; Kordov, K. SHAH: Hash function based on irregularly decimated chaotic map. Int. J.
Electron. Telecommun. 2018, 64, 457–465. [CrossRef]

46. Sobti, R.; Geetha, G. Cryptographic Hash functions—A review. IJCSI Int. J. Comput. Sci. Issues 2012, 9, 461–479.
47. Zhang, J.; Wang, X.; Zhang, W. Chaotic keyed hash function based on feedforward–feedback nonlinear digital filter. Phys. Lett. A

2007, 362, 439–448. [CrossRef]
48. Li, Y.; Xiao, D.; Deng, S.; Han, Q.; Zhou, G. Parallel Hash function construction based on chaotic maps with changeable parameters.

Neural Comput. Appl. 2011, 20, 1305–1312. [CrossRef]

http://doi.org/10.24425/123546
http://doi.org/10.1016/j.physleta.2006.10.052
http://doi.org/10.1007/s00521-011-0543-4

	Introduction
	Materials and Methods
	SHA-512 Hash Algorithm
	Chaotic Maps
	Improved Logistic Map
	Cosine Logistic System
	Logistic Sine System
	Tent Sine System
	Hybrid Chaotic Map

	DNA Sequence and Complementary Rules
	Method

	Results
	Hash Value Distribution
	Linear Complexity
	Sensitivity Analysis
	Confusion and Diffusion Analyses
	Hash Attacks
	Brute Force Attack
	Cryptanalytic Attacks

	Conclusions
	References

